420
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical performance of binder-free Ni(OH)2/RGO battery type electrode materials for supercapacitor

, , , , , , & show all
Pages 725-733 | Received 27 Feb 2022, Accepted 29 May 2022, Published online: 18 Jun 2022
 

ABSTRACT

Ni(OH)2/reduced graphene oxide (RGO) core-shell hybrid nanostructure has been synthesized employing a facile and inexpensive chemical-precipitation technique. The synthesized core-shell nanostructures, comprising Ni(OH)2 at the core and RGO as shell, were then coated on commercially available Ni foam used as an electrode. Prepared Ni(OH)2/RGO nanospheres were analyzed by Raman analysis for structural information. In the Raman spectrum, the peaks at 1323 and 1612 cm−1 correspond to the D and G bands of RGO, respectively. The peaks at 468 and 335 cm−1 depict the characteristic bands of Ni(OH)2 . The core-shell morphology of the hybrid was established from Transmission Electron Microscope (TEM) images. The lattice fringes are measured to be 0.33 nm for RGO layers and 0.22 nm for Ni(OH)2 core, which correspond to (002) plane of RGO and (101) plane of Ni(OH)2. For electrochemical studies, the as-prepared Ni(OH)2/RGO hybrid was used as a battery-type electrode in supercapacitor. The results indicate that the Ni(OH)2/RGO core-shell hybrid nanostructure exhibits a maximum specific capacity of 513.8 Cg−1 at 10 mV/s with a maximum energy density of 119.4 Whkg−1 at 1250 Wkg−1 power density.

Acknowledgments

The authors acknowledge the characterization facilities of Institute Instrumentation Centre and Department of Metallurgical and Materials Engineering, IIT Roorkee.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/15435075.2022.2088238

Additional information

Funding

This work was partially supported by Science and Engineering Research Board, India [grant number: EMR/2016/001282].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 405.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.