173
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Physicochemical, Morphological, and Microstructural Characterisation of Bacterial Nanocellulose from Gluconacetobacter xylinus BCZM

, ORCID Icon, , ORCID Icon, &
Pages 4368-4379 | Published online: 10 Dec 2020
 

Abstract

The physicochemical, morphological, microstructural, bulk chemical, and thermal characterization of bacterial nanocellulose (BNC) isolated from Gluconacetobacter xylinus BCZM was performed in this study. The morphological and microstructural analyses of the transparent white BNC product is characterized by an asymmetrically oriented and dense network of fibrils with an average diameter of 200 nm. Energy dispersive X-ray (EDX) analysis revealed the elements carbon (C = 70.10 wt.%), oxygen (O = 23.10 wt.%), and sodium (Na = 6.8 wt.%). Functional group analysis revealed characteristic cellulose peaks observed at 3272.94 cm−1, 2922.91 cm−1, 1147.91 cm−1, and 929.06 cm−1 in the chemical structure of BNC. X-ray diffraction (XRD) confirmed that BNC consists primarily of pure cellulose, based on the four broad peaks detected at 2θ = 6.24°, 14.70°, 17.24°, and 23.08°. The peaks are attributed to the amorphous and crystalline regions of the diffraction planes characteristic of cellulose. Thermal analysis revealed BNC experienced significant thermal degradation from 30°C to 700°C mainly due to the cellulose dehydration, decomposition, and depolymerization reactions. Total mass loss (ML) was 57.24% whereas the residual mass (RM) was 42.76%. The findings indicate that the synthesized BNC is potentially useful for high crystalline, porous, and lower temperature cellulose applications.

Acknowledgments

The authors greatly appreciate Universiti Teknologi Malaysia (UTM) for supporting this research under the National Research and University Grant (RUG). Further acknowledgement goes to Bauchi State University Gadau, in Bauchi State, Nigeria. The technical assistance of the Hydrogen and Fuel Cell Laboratory and Institute of Future Energy at Universiti Teknologi Malaysia (Skudai Campus) and the University Industry Research Laboratory are also gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.