630
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Efficacy of Paired Electrochemical Sensors for Measuring Ozone Concentrations

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 179-190 | Published online: 21 Mar 2019
 

Abstract

Typical low-cost electrochemical sensors for ozone (O3) are also highly responsive to nitrogen dioxide (NO2). Consequently, a single sensor’s response to O3 is indistinguishable from its response to NO2. Recently, a method for quantifying O3 concentrations became commercially available (Alphasense Ltd., Essex, UK): collocating a pair of sensors, a typical oxidative gas sensor that responds to both O3 and NO2 (model OX-B431) and a second similar sensor that filters O3 and responds only to NO2 (model NO2-B43F). By pairing the two sensors, O3 concentrations can be calculated. We calibrated samples of three NO2-B43F sensors and three OX-B431 sensors with NO2 and O3 exclusively and conducted mixture experiments over a range of 0–1.0 ppm NO2 and 0–125 ppb O3 to evaluate the ability of the paired sensors to quantify NO2 and O3 concentrations in mixture. Although the slopes of the response among our samples of three sensors of each type varied by as much as 37%, the individual response of the NO2-B43F sensors to NO2 and OX-B431 sensors to NO2 and O3 were highly linear over the concentrations studied (R2 ≥ 0.99). The NO2-B43F sensors responded minimally to O3 gas with statistically non-significant slopes of response. In mixtures of NO2 and O3, quantification of NO2 was generally accurate with overestimates up to 29%, compared to O3, which was generally underestimated by as much as 187%. We observed changes in sensor baseline over 4 days of experiments equivalent to 34 ppb O3, prompting an alternate method of calculating concentrations by baseline-correcting sensor signal. The baseline-correction method resulted in underestimates of NO2 up to 44% and decreases in the underestimation of O3 up to 107% for O3. Both methods for calculating gas concentrations progressively underestimated O3 concentrations as the ratio of NO2 signal to O3 signal increased. Our results suggest that paired NO2-B43F and OX-B431 sensors permit quantification of NO2 and O3 in mixture, but that O3 concentration estimates are less accurate and precise than those for NO2.

Acknowledgments

Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services.

Additional information

Funding

This work was supported by the National Institute of Occupational Safety and Health (1R01OH010533 and T42OH008428).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.