514
Views
0
CrossRef citations to date
0
Altmetric
Review

Beyond descriptive statistics: using additional analyses to determine the technological feasibility of meeting a new exposure limit

, , &
Pages 446-460 | Published online: 13 Aug 2021
 

Abstract

In determining whether a new permissible exposure limit is technologically feasible, the Occupational Safety and Health Administration (OSHA) and various courts have used poorly defined criteria such as whether “most employers most of the time” are able to comply with a standard. This vague definition creates problems when employers try to determine the best way to protect their workers and estimate the costs to remain in compliance with the permissible exposure limit. This article proposes a more rigorous approach to determine feasibility. By utilizing the best available statistical methods, employers and rule makers can better understand the variability within existing exposure data to determine the feasibility of new exposure limits. There are several readily available statistical tools that can be used for this purpose. To illustrate these techniques, a subset of data from the foundry industry and analysis from the OSHA respirable crystalline silica rulemaking proceeding are compared to methods published by the National Institute for Occupational Safety and Health in 1977 and a more sophisticated Bayesian approach. The results of this analysis suggest that complying with a new permissible exposure limit is more challenging than what is implied by OSHA’s analysis, and calls into question its method of determining compliance. In the same vein, OSHA should move away from assessing compliance based on individual measurements and instead use a statistical approach to determine if a workplace is in compliance. These changes will encourage employers to better characterize occupational exposures, and will ultimately lead to better protection for employees while also providing employers protection from violations due to one-off overexposures.

Acknowledgments

All authors have disclosed actual and potential conflicts regarding this manuscript and the nature of these conflicts. Four of the authors (BR, TS, TT, NZ) are employed by Cardno ChemRisk, a consulting firm that provides scientific advice to the government, corporations, law firms, and various scientific/professional organizations. Neither Cardno ChemRisk nor the authors of this study received direct or indirect compensation or consideration from organizations or product manufacturers mentioned in this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.