369
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Particle-phase collection efficiency of the OVS and IFV Pro personal pesticide samplers

, & ORCID Icon
Pages 579-589 | Published online: 01 Nov 2021
 

Abstract

The inhalable aerosol sampling criterion has been developed to characterize the efficiency of particles entering the nose and/or mouth. However, pesticides can exist in the air in both vapor and particulate phases, which complicates exposure assessments. The American Conference of Governmental Industrial Hygienists (ACGIH) has established an IFV (inhalable fraction and vapor) endnote for chemicals such as many pesticides that need to be evaluated for both their inhalable fraction and vapor concentrations to fully characterize worker exposures. The purpose of this study was to evaluate the particle-phase collection efficiency of a commonly-used pesticide sampler, the OSHA Versatile Sampler (OVS) as well as a recently developed sampler, the IFV Pro. The OVS was not designed as an inhalable aerosol sampler, whereas the IFV Pro contains a sampling head scaled to that of the Institute of Medicine (IOM) sampler, which is known to closely follow the inhalable sampling criterion. Laboratory experiments involving a vertical-flow, low-velocity scheme, and finely graded test dusts with known median aerodynamic diameter were used to determine sampler collection efficiencies. The collection efficiency of the OVS was evaluated as recommended by the manufacturer and after two modifications made to potentially improve its collection efficiency. The OVS was found to substantially under-sample relative to the inhalable criterion, and the two modifications did not provide substantial improvements to the original configuration. Conversely, the collection efficiency of the IFV Pro was found to compare closely to that of the IOM, although collecting 9% more mass. When applied side-by-side with the OVS sampler in a chamber into which ethylene glycol was sprayed as a proxy for a pesticide, the IFV Pro collected an average of 1.9-fold more mass than the OVS for the same flow rate and sample time.

Acknowledgments

The authors would like to thank Mr. Ralph Altmaier for his helpful assistance while conducting this research, and Mr. Michael Murphy for suggesting the need for, and helping to initiate, this research.

Data availability statement

The data that support the findings of this study are available from the corresponding author, P. T. O, upon reasonable request.

Additional information

Funding

This research was funded by the National Institute of Environmental Health Sciences through the University of Iowa Environmental Health Sciences Research Center (NIEHS/NIH P30 ES005605). Student support was provided during the conduct of this research by the Heartland Center for Occupational Health and Safety, a NIOSH/CDC Education and Research Center (T42OH008491).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.