Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 24, 2020 - Issue 1
479
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Development of a global positioning system data-based trip-purpose inference method for hazardous materials transportation management

, , , &
Pages 24-39 | Received 12 Sep 2017, Accepted 02 May 2019, Published online: 22 May 2019
 

Abstract

The shipments of hazardous materials (hazmat) which are indispensable for economic and social development have increased; accordingly, a rising number of incidents involving hazmat transportation may inflict more dread damages to both people and environment. This severe situation has prompted the need for deep mining trip purposes using trajectory information in order to enhance the hazmat-transportation regulatory. This paper presents an unsupervised two-phase framework for inferring multiple trip purposes (i.e. loading, unloading, in-yard, and other stops) based on the passive global positioning system (GPS) data during the hazmat-transportation process. In detail, a scalable ordering points to identify the clustering-structure mixture algorithm (SOMA) is first developed to group hazmat vehicles trip ends into hotspot places in phase I; In phase II, a two-stage trip-purpose identification approach is proposed with a combination of the fuzzy c-means (FCM) method and the point-of-interest (POI) information. The effectiveness and efficiency of the designed two-phase framework are evaluated through the real-world datasets, which are generated by more than 12,000 vehicles in Liaoning Province, China. The results demonstrate that the method can infer four types of freight trip purposes with an accuracy of 82.1%. The proposed approach framework can help analyze the vehicle trips associated with the loading states, which will provide effective decision-making support for the hazmat-transportation regulatory.

Acknowledgement

The authors thank the anonymous reviewers for their comments and suggestions for improving the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (91846202, 71621001, and 91746201) and the Fundamental Research Funds for the Central Universities (2019JBM308).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.