205
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Machine learning and molecular dynamics based models to predict the temperature dependent elastic properties of silver nanowires

ORCID Icon, &
Pages 345-353 | Published online: 08 Mar 2023
 

Abstract

Metallic nanowires are now extensively used in several nanoscale devices and applications. To further enhance their efficient usage, the estimation and prediction of thermal and mechanical properties of these nanowires is very important. Performing experimental studies on the objects of such a small dimension is quite challenging. Molecular dynamics simulation technique can easily simulate and perform virtual experimentation on the objects of nanoscale dimensions. In the present work, silver nanowires of known dimension simulated and a uniaxial stress has been implemented using the Molecular dynamics approach. The stress-strain data generated by MD simulation, has been utilized to train, test and validate different machine learning models. These machine-learning models offer a reasonably good amount of predictability of the tensile characteristics of the silver nanowire at any temperature.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 646.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.