412
Views
5
CrossRef citations to date
0
Altmetric
Articles

VOC and PAH characterization of petroleum coke at maximum thermal decomposition temperature

, &
Pages 1305-1314 | Received 29 May 2018, Accepted 08 Oct 2018, Published online: 20 Nov 2018
 

ABSTRACT

In steel industry, hard coal is proceeded in coke ovens to produce metallurgical coke. In this process, some additives such as petroleum coke (petcoke) are used for optimizing operational cost. For the determination of addition ratio of petcoke, it is important not to disrupt coke quality, especially with respect to coke reactivity index and coke strength after reaction, while another important point is emission quality. In this study, petcoke gas (PCG) emitted from the thermal decomposition of petcoke at the maximum thermal decomposition temperature is characterized for volatile organic compounds (VOCs) and polyaromatic hydrocarbons (PAHs) and the results are assessed in comparison to the coke oven gas (COG). First, the petcoke sample is heated for gasification by using thermal gravimetric analyzer-DTA device. The gas in the temperature range of 490–510°C, where the highest gasification acceleration occurs, is taken from the funnel and transferred to GC-MS device by using a headspace gas sampler unit. The total VOC concentration in PCG and COG is found to be 121.76 ppm and 5,774.76 ppm, respectively, while the total PAH concentrations are 0.625 and 0.495 ppm, respectively. The results show that using petcoke in coal blend seems to be a more environment-friendly process with respect to a significant decrease in VOC emissions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.