239
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dynamic process of hydrogen and heat generation from reaction of Al–Li alloy powders and water vapor at moderate temperatures

, , , &
Pages 1372-1379 | Received 18 Jun 2018, Accepted 08 Oct 2018, Published online: 16 Nov 2018
 

ABSTRACT

As one of the alternative clean fuels, aluminum is suitable for generating hydrogen and power via metal hydrolysis. The reaction process characteristics were studied in a cylindrical reactor with 5 g of Al–Li alloy powder as fuel at moderate temperatures. The test performed good results with 1,130 mL/g alloy of H2 yield, 86% of the reaction efficiency, and 54.5% of usable heat ratio. The dynamic change of temperature distribution was measured by 12 thermocouples in the reactor, and the maximum was not beyond 892°C. On the basis of the temperature characteristics, the reaction propagation speed was calculated and in the range of 0.57–0.95 mm/s. Moreover, the micromorphology and ingredients presented obvious differences between top product and bottom product, which was resulted from water vapor diffusion. The reaction of Al–Li alloy and steam was determined by both water vapor diffusion and heat transfer, which led to the distinct temperature trends near the vapor inlet, away from the vapor inlet, on the top and at the bottom. On the basis of the results, a mild and controllable hydrogen generation can be achieved at moderate temperatures by optimizing vapor inlet arrangement.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China (51376160).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.