199
Views
12
CrossRef citations to date
0
Altmetric
Articles

Enhanced photocurrent in thin-film GaAs solar cells with embedded Al nanoparticles

, &
Pages 815-823 | Received 03 Sep 2018, Accepted 26 Dec 2018, Published online: 07 Mar 2019
 

ABSTRACT

It is believed that the effectual scattering by earth-abundant Al nanoparticles in combination with photoelectric conversion-efficient GaAs material may help for cost-effective solar cells. Al nanoparticles of various radii embedded at different depths in a Ta2O5-coated GaAs semiconductor have been studied by finite-difference time-domain method for their influence towards spectral absorption rate and photocurrent in GaAs solar cells. The calculated spectral absorption rate and photocurrent show a significant enhancement at the optimal depth for a particular radius of Al nanoparticles, which is explained on the basis of surface plasmon resonance. Al nanoparticles of radius 80 nm embedded just below the antireflection layer of Ta2O5 result a maximum spectral absorption rate of 0.95 that leads to a photocurrent of 30.43 mA/cm2.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.