124
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The effect of tri-fuel blends on engine characteristics of a direct injection diesel engine with exhaust gas recirculation

ORCID Icon, ORCID Icon &
Pages 1227-1249 | Received 18 Oct 2021, Accepted 01 Mar 2022, Published online: 24 Mar 2022
 

ABSTRACT

Biofuels are the most promising alternative to petro-diesel. In this work, the combined effect of mahua biodiesel and 1-Hexanol is studied on the engine characteristics. The concentration of both 1-Hexanol and mahua biodiesel is varied, 10%, 20%, and 30% each with diesel fuel. Common rail direct injection diesel engine is used in this study. Engine load is varied from 20% to 80% in step of 20%, the speed of the engine is constant throughout the experiment. Biofuel blends showed improved cylinder pressure and mean gas temperature at a higher engine load. At 60% load, 10H10M80D (10% 1-Hexanol/10% mahua biodiesel/80% diesel) showed 3.45% lower thermal efficiency and 6.11% higher fuel consumption compared to diesel. At 60% load, all the biofuel blends showed 50% lower carbon monoxide emission. At 60% load, 10H10M80D showed 33.33% lower hydrocarbon emission and 0.96% higher nitrogen oxide emission compared to baseline readings. The biofuel blends are less sensitive to exhaust gas recirculation (EGR) due to the oxygenated nature of biofuels. With 20% EGR, at 60% load, 10H10M80D showed 39.48% lower nitrogen oxide compared to no EGR. The results of 10H10M80D showed the best performance at all loads.

Acknowledgments

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed on the publisher’s website

Additional information

Funding

The author(s) reported that there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.