291
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simulation study on the adsorption characteristics of CO2 and CH4 by oxygen-containing functional groups on coal surface

, ORCID Icon, , &
Pages 3709-3719 | Received 18 Jan 2022, Accepted 12 Apr 2022, Published online: 28 Apr 2022
 

ABSTRACT

To investigate the adsorption mechanism of CO2 and CH4 with oxygen-containing functional groups in coal, the structural models of coal with different functional groups of carboxyl, hydroxyl, carbonyl, and ether bonds were constructed using Materials Studio software, and the adsorption isotherms, heat of adsorption, adsorption energy, energy distribution, and adsorption configurations of CO2 and CH4 adsorbed by different functional group structures were analyzed using the giant regular GCMC method. The results showed that the presence of carboxyl, hydroxyl, and carbonyl functional groups will promote the adsorption of CO2 by coal, and the intermolecular interaction energies of the model with the addition of carboxyl, hydroxyl, and carbonyl groups, and CO2 increased by 70.37%, 33.67%, and 14.26%, respectively. The order of the adsorption strength of the five structures is: AC-COOH > AC-OH > AC-O > AC > AC-OCH3, which indicates that the influence of oxygen-containing functional groups on the adsorption performance of CO2 by coal mainly depends on polarity. The presence of carboxyl, hydroxyl, and carbonyl functional groups weakens the adsorption of CH4 on coal, and the interaction energy between the model and gas molecules with the addition of carboxyl, hydroxyl, carbonyl, and ether bonds reduced by 41.83%, 36.14%, 26.22%, and 80.21%, respectively. The order of the adsorption strength of the five structures is: AC > AC-O > AC-OH > AC-COOH > AC-OCH3, which indicates that the effect of oxygen-containing functional groups on the adsorption of CH4 on coal mainly depends on hydrophobicity; the introduction of ether-bonded functional groups does not favor the adsorption of CO2 and CH4 molecules on coal. It indicates that the ether bond has a certain repulsive effect on CO2 and CH4 molecules. In different functionalized coal structures with the same carbon atom skeleton, there are different adsorption capacities for CH4 as well as CO2, but in the same functionalized structure, the adsorption magnitude relationship is CO2 > CH4, indicating that the coal body structure interacts with CO2 more than CH4.

Acknowledgments

The authors are grateful to the financial support from the National Natural Science Foundation of China (No. 51774170). Thanks to all the reviewers and editors for their work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.