220
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Salt-tolerant and instant friction reducer for slickwater fracturing stimulation based on dispersion polymerization

, , , , &
Pages 6392-6403 | Received 09 Dec 2021, Accepted 27 Jun 2022, Published online: 18 Jul 2022
 

ABSTRACT

In this study, a salt-tolerant friction reducer was proposed on the basis of dispersion polymerization to recycle high-salinity produced water. A dispersion polymerization friction reducer (DPFR) was synthesized using an acrylamide copolymer in an ultra-high-salinity solution, and its friction reduction performance was simulated in produced water. The gel permeation chromatography revealed that DPFR exhibited high molecular weight and low dispersity could stretch rapidly and show hydration in 2 s. Thus, the proposed reducer exhibits considerable potential for fracturing friction reduction. These performance tests were primarily conducted using a closed-loop flow system at various bulk velocities, dosages, and salt contents; therefore, the experimental results revealed that 2000 ppm DPFR exhibited the maximum slickwater friction reduction efficiency (FRe) of approximately 80% at 40 L/min. Furthermore, DPFR retained a high friction reduction performance of more than 75% at concentration of 120 g /L Na+, 100 g/L Ca2+, 20 g/L Fe3+, 180 g/L Cl, and 100 g/L SO42- solutions. Functional tests revealed that novel DPFR exhibited a high salt tolerance in various high-salinity produced waters. Furthermore, DPFR is economical, environment-friendly and operationally efficient, because no additional organic additive is required in the synthesis and application process.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.