891
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Design and Synthesis of Porous Organic Polymeric Materials from Norbornene Derivatives

&
Pages 400-437 | Received 14 Jun 2020, Accepted 08 May 2021, Published online: 14 Jun 2021
 

Abstract

The interest in porous organic materials derived from norbornenes is driven by versatile chemistry of norbornenes, fine-tunable structure of these polymers, high accessible surface area, and large free volume of polynorbornenes for technical applications in adsorption, membrane separation, gas storage, and heterogeneous catalysis. This comprehensive review surveys recent research trends in the development of porous polynorbornenes. A rational design was achieved in metathesis, addition, and CANAL polymers as an extension of the modular strategy using norbornene motifs as building blocks. Tuning the structure of norbornene-containing monomer units allowed obtaining high-free-volume polymers with apparent Brunauer–Emmett–Teller (BET) surface areas up to 1000 m2/g that made these materials promising for various engineering applications such as membrane gas separation, gas sorbents, CO2 capture, scaffolds to support catalysts, or reagents for catalysis. The synthesis and porous characteristics of polynorbornenes are presented along with the discussion of correlations between the chemical structure of these materials and their porous structures. Possible important applications of porous polynorbornenes are also emphasized.

Additional information

Funding

The section “Metathesis polymers” was prepared with financial support of Russian Foundation for Basic Research (RFBR), project number 19-33-60035. The preparation of section “Addition polymers” was supported by the Russian Science Foundation (project no. 20-13-00428). The section “CANAL polymers” was prepared within the State Program of TIPS RAS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.