82
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Temperature-controlled S vs N selective alkylation of 1-phenyl tetrazole-5-thione with α,β-unsaturated systems in solvent-free organic salt media

, , , &
Pages 479-493 | Received 19 Oct 2022, Accepted 10 Jan 2023, Published online: 02 Feb 2023
 

Abstract

In this work, a novel series of N and S-alkylated derivatives of 1-phenyl tetrazole-5-thione were synthesized by Michael addition in organic salt media TBAB (Tetrabutylammonium bromide) using inorganic base K2CO3 under solvent-free conditions. The new and conveniently synthesized products showed unusual regioselectivity during the reaction. S-Michael adducts via reaction between 1-phenyl tetrazole-5-thione and acrylic esters as well as acrylonitrile were afforded at room temperature and N-Michael adducts obtained at 70°C. Both reactions occurred within 24 h. Surprisingly, using fumarate esters as Michael acceptor proceeded a SN2 reaction at 100°C due to steric effects. The structures of products all were confirmed by 1H and 13C NMR spectra and target compound yields were good to excellent.

GRAPHICAL ABSTRACT

Acknowledgments

Authors are thankful of the laboratories of Tehran and Tabriz University as well as University of Mohaghegh Ardabili for the products analysis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 683.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.