544
Views
10
CrossRef citations to date
0
Altmetric
Articles

Relative potency factor approach enables the use of in vitro information for estimation of human effect factors for nanoparticle toxicity in life-cycle impact assessment

ORCID Icon, , , , &
Pages 275-286 | Received 08 May 2019, Accepted 29 Dec 2019, Published online: 13 Jan 2020
 

Abstract

The major theme of the NRC report “Toxicity Testing in the Twenty-first Century” is to replace animal testing by using alternative in vitro methods. Therefore, it can be expected that in the future in vivo data will be replaced with in vitro data. Hence, there is a need for new strategies to make use of the increasing amount of in vitro data when developing human toxicological effect factors (HEF) to characterize the impact category of human toxicity in life cycle assessment (LCA). Here, we present a new approach for deriving HEF for manufactured nanomaterials (MNMs) based on the combined use of in vitro toxicity data and a relative potency factor (RPF) approach. In vitro toxicity tests with nano-CuO, nano-Ag and nano-ZnO and their corresponding ions were performed on THP-1, CaCo-2 and Hep-G2 cell lines. The ratio of the here calculated EC50 of the ionic form and the nanoform corresponds to the Relative Potency Factor (RPF). Using this approach, HEFs (case/kgintake) for the aforementioned nanoparticles were obtained. Non-carcinogenic HEFs (case/kgintake) for exposure via ingestion of 5.9E-01, 7.5E-03 and 2.5 E-02 were calculated for nano-Ag, nano-CuO and nano-ZnO, respectively. The HEF values here proposed were compared with HEF values extrapolated from in vivo toxicity data reported in the literature. The here presented procedure is the most appropriate approximation currently available for using in vitro toxicity data on MNM for application in the field of LCIA.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research received funding from the NanoReg2 project [Grant no. 646221] of the European Union’s Horizon 2020 research and innovation programme. Jean-Pierre Kaiser, Matthias Rösslein and Peter Wick are supported by the Competence Centre for Materials Science and Technology (CCMX) Project “NanoScreen.”

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.