249
Views
40
CrossRef citations to date
0
Altmetric
Articles

Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells in vitro and blood vessels in vivo

, , , , &
Pages 1017-1038 | Received 25 Dec 2019, Accepted 07 Jun 2020, Published online: 23 Jun 2020
 

Abstract

Nanomaterials (NMs) with tubular structures, such as halloysite nanotubes (HNTs), have potential applications in biomedicine. Although the biocompatibility of HNTs has been investigated before, the toxicity of HNTs to blood vessels is rarely systemically evaluated. Herein, we compared the toxicity of HNTs and multi-walled carbon nanotubes (MWCNTs) to human umbilical vein endothelial cells (HUVECs) in vitro and blood vessels of mice in vivo. HUVECs internalized HNTs and MWCNTs, but the uptake of HNTs was not obviously changed by clathrin inhibitor. Exposure to NMs decreased cellular viability, activated apoptotic proteins and up-regulated adhesion molecules, including soluble vascular cell adhesion molecule 1 (sVCAM-1) and VCAM-1. As the mechanisms, NMs decreased NO levels, eNOS mRNA and eNOS/p-eNOS proteins. Meanwhile, NMs promoted intracellular ROS and autophagy dysfunction, shown as decreased protein levels of LC3, beclin-1 and ATG5. The eNOS regulator Kruppel-like factor 4 (KLF4) was inhibited, but another eNOS regulator KLF4 was surprisingly up-regulated. Under in vivo conditions, ICR mice intravenously injected with NMs (50 μg/mouse, once a day for 5 days) showed an increased percentage of neutrophils, monocytes and basophils. Meanwhile, autophagy dysfunction, eNOS uncoupling, activation of apoptotic proteins and alteration of KLF proteins were also observed in mouse aortas. All of the toxic effects were more pronounced for MWCNTs in comparison with HNTs based on the same mass concentrations. Our results may provide novel insights about the toxicity of NMs with tubular structures to blood vessels. Considering the toxicological data reported here, HNTs are probably safer nanocarriers compared with MWCNTs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.