128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

MiR-5622-3p inhibits ZCWPW1 to induce apoptosis in silica-exposed mice and spermatocyte cells

, , , , , , , & show all
Pages 372-384 | Received 11 Jan 2023, Accepted 22 May 2023, Published online: 14 Jun 2023
 

Abstract

Silica nanoparticles (SiNPs) could cause damage to spermatogenesis, and microRNAs were reported to be associated with male reproduction. This research was designed to explore the toxic impacts of SiNPs induced in male reproduction through miR-5622-3p. In vivo, 60 mice were randomized into the control group and SiNPs group, in which they were exposed to SiNPs for 35 days and then recovered for 15 days. In vitro, 4 groups were set: control group, SiNPs group, SiNPs + miR-5622-3p inhibitor group, and SiNPs + miR-5622-3p inhibitor negative control (NC) group. Our research indicated SiNPs caused the apoptosis of spermatogenic cells, increased level of γ-H2AX, raised the expressions of RAD51, DMC1, 53BP1, and LC8 which were DNA damage repair relative factors, and upregulated Cleaved-Caspase-9 and Cleaved-Caspase-3 levels. Furthermore, SiNPs also elevated the expression of miR-5622-3p but downregulated the level of ZCWPW1. However, miR-5622-3p inhibitor reduced the level of miR-5622-3p, increased the level of ZCWPW1, relieved DNA damage, and depressed the activation of apoptosis pathway, thus, alleviating spermatogenic cells apoptosis caused by SiNPs. The above-mentioned results indicated that SiNPs induced DNA damage resulting in activating of DNA damage response. Meanwhile, SiNPs raised the level of miR-5622-3p targeting inhibited expression of ZCWPW1 to suppress the repair process, possibly making DNA damage so severe that leading to the failure of DNA damage repair, finally inducing the apoptosis of spermatogenic cells.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author, Prof. XQZ ([email protected]), upon reasonable request.

Additional information

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 32261160641).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.