202
Views
18
CrossRef citations to date
0
Altmetric
Articles

Free vibrations of functionally graded material cylindrical shell closed with two spherical caps

, ORCID Icon, &
Pages 939-951 | Received 28 Dec 2019, Accepted 10 Dec 2020, Published online: 11 Mar 2021
 

ABSTRACT

Free vibration response of a cylindrical shell closed with two hemispherical caps at the ends (hermit capsule) is analysed in this research. It is assumed that the system of joined shell is made from functionally graded materials (FGM). Properties of the shells are assumed to be graded through the thickness. Cylindrical and hemispherical shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first order theory of shells is used. Donnell type of kinematic assumptions are adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton's principle. The resulting system of equations are discretised using the semi-analytical generalised differential quadrature (GDQ) method. After proving the efficiency and validity of the present method for the case of isotropic homogeneous joined shells, some parametric studies are carried out for the system of combined FGM hermetic capsule.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 293.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.