69
Views
0
CrossRef citations to date
0
Altmetric
Nanofluid MHD Flow

Viscoelastic third-order nanofluid MHD flow for wire coating purpose inside canonical coating die with variable viscosity effect: numerical and analytical solutions

, , &
Pages 1405-1423 | Received 29 Sep 2021, Accepted 22 Apr 2022, Published online: 06 Nov 2023
 

Abstract

The polyethene coating is frequently functionalized to cables or pipes for corrosion prevention, voltage differential, mechanical characteristics, and environmental legislation. The metal coating technique, in particular, is important in a variety of commercial applications. Coaxial extrusion, immersion, and electromagnetic application are examples of wire surface treatments. The wire coating procedure necessitates an increase in thermal performance. As a result, this research aims to determine how floating nanoparticles affect the mass and heat transport mechanisms of non-Newtonian fluid in the posttreatment for cable coating processes. For nanofluids, the Buongiorno model is used, including variable viscosity. The original mathematical formulation in terms of nonlinear ODEs for bvph2 is altered to first-order ODEs using similarity transformation. The data collection for the projected bvph2 is developed for variables related to the proposed model manipulating the velocity consuming the explicit bvph2 technique. The exercise, confirmation, and analysis processes of the ND-solve method are utilized to appraise the attained results of bvhp2 for numerous cases, and an assessment of the achieved consequences is executed with available statistics set to pattern the correctness and efficiency of the suggested algorithm for the scrutiny of non-Newtonian fluid problem connected bvph2. The prevailing uniformity of recommended conclusions with published findings designates the legitimacy of the structure, and the accurateness of 10−6 is also accomplished. The analytical findings of this investigation revealed that within the Reynolds modeling, the stress on the whole wire surface combined with shear forces at the surface predominates Vogel’s model. The contribution of nanomaterials upon force on the entire surface of wire and shear forces at the surface appears positive. A non-Newtonian feature can increase the capping substance’s velocity. This research could aid in the advancement of wire coating technologies. For the first instance, the significance of nanotechnology during wire coating evaluation is explored by utilizing Brownian motion with generation/absorption slip processes. For time-dependent viscosity, two alternative models are useful.

Acknowledgement

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 552.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.