181
Views
0
CrossRef citations to date
0
Altmetric
Articles

Differences in kick-leg kinematics in various side-kick heights

, ORCID Icon, ORCID Icon, , , & show all
Pages 2170-2177 | Published online: 23 May 2023
 

ABSTRACT

This study aims to explore the variation of lower extremity kinematic characteristics when elite taekwondo athletes perform the side-kick on protective gear placed at various heights. Twenty distinguished male national athletes were recruited and were asked to kick targets at three different heights adjusted according to their body height. A three-dimensional (3D) motion capture system was used to collect kinematic data. Kinematic parameters differences in the side-kick at three different heights were analyzed by using a one-way ANOVA (p < .05). The results revealed significant differences in the peak linear velocities of the pelvis, hip, knee, ankle, and centre of gravity of the foot during the leg-lifting phase (p < .05). Significant differences between heights were noted in the maximum angle of pelvis left tilting and hip abduction in both phases. In addition, the maximum angular velocities of pelvis left tilting and hip internal rotation were only different in the leg-lifting phase. This study found that, to kick at a higher target, athletes increase the linear velocities of their pelvis and all lower extremity joints of attacking leg in the leg-lifting phase; however, they only increase rotational variables on the proximal segment at the peak angle of the pelvis (left tilting) and hip (abduction and internal rotation) in the same phase. As an application in actual competitions, according to the opponent’s body height, athletes can adjust both linear and rotational velocities of their proximal segements (pelvis and hip) and deliver into distal segements (knee, ankle, foot) linear velocity to perform accurate and rapid kicks.

Acknowledgment

We are grateful for support for this study from the Ministry of Science and Technology, Taiwan. We would like to thank the participants and coach for their support of this study, too.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST: 104-2410-H-179-003.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.