241
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional analysis of vertical square anchor plate in cohesionless soil

, &
Pages 1-9 | Received 23 Nov 2017, Accepted 25 Mar 2019, Published online: 23 Apr 2019
 

ABSTRACT

Vertical anchor plates are often provided to increase the performance of various geotechnical engineering structures such as sheet pile walls, bulkheads, bridge abutments and offshore structures. Hence, the safe design of such structures needs a better understanding of the 3D behaviour of the anchor plate. This paper presents and discusses the results obtained from a series of 3D finite-difference analyses of vertical square anchor plate embedded in cohesionless soil. The 3D model is found to closely predict experimental pullout load–displacement relationship. The failure mechanism observed in the numerical model is found to be very similar to the failure reported in experimental studies. For a given embedment depth, the stiffness of the breakout factor–displacement response substantially reduces with increase in anchor plate size. However, the ultimate reduction in anchor capacity is found to approximately 8% with an increase in anchor size from 0.1 to 1 m. Numerical analysis reveals that at deeper embedment depth, the friction angle of sand is the critical parameter in enhancing the performance of anchor plate. The obtained 3D model results are then compared with the published results and are found to be reasonably in good agreement with each other.

Acknowledgements

The authors gratefully acknowledged the financial support provided to the first author by DST-SERB, India, under the National Post-Doctoral Fellowship (NPDF) scheme of file number: PDF/20l6/002651 at the Department of Civil Engineering, IISc Bangalore.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.