295
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Three dimensional analyses of geocell reinforced encased stone column supported embankments on lithomargic clay

, ORCID Icon &
Pages 458-476 | Received 12 Aug 2021, Accepted 14 May 2022, Published online: 27 May 2022
 

ABSTRACT

Geocells are a superior form of reinforcement due to their cost-effectiveness and three-dimensional confining properties. However, numerical modeling of geocell is always challenging due to its three-dimensional honeycomb structure. The limitations of the equivalent composite approach (ECA) led to the recent development of full 3D numerical models, which consider geocell-infill material interaction. This paper discusses the time-dependent performance of geocell-reinforced encased stone column-supported embankment considering the actual 3D nature of geocells using the finite element program ABAQUS. Parametric studies were carried out to study the stress transfer mechanism, vertical deformation of the foundation soil, and stress-strain variation inside the geocell pockets. It is found from the analyses that with the provision of a geocell layer on top of Geosynthetic Encased Stone Columns (GESC), the stress concentration ratio improved by 47% at the end of consolidation compared to GESC alone. Also, an 80% reduction in foundation surface settlement is observed with geocell-sand mattresses. The geocell-sand mattress decreased the bulging of the stone columns, and almost 80% of the stone column bulging occurred by the end of the embankment construction. The proposed model’s numerical results show that the equivalent composite approach overestimated the stress concentration ratio and bearing capacity. The tensile stresses are non-uniformly distributed in the geocell pockets, and the maximum tensile force was mobilised at the geocell mid-height. Among the various geocell infill materials analysed, the aggregates were best suited considering the stress concentration ratio and vertical settlement. The numerical results supported the idea that encased stone columns with geocells at the embankment base can perform similarly to a geosynthetic reinforced piled embankment system, which is costlier but very efficient. When the modular ratio is more than 40, geocell-reinforced encased stone column-supported embankment is similar to GRPES.

Acknowledgments

The authors wish to acknowledge the Science Engineering Research Board (SERB), India, for the financial support for this research work through the grant ECR/2017/000445.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work was supported by the Science Engineering Research Board India [ECR/2017/000445].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.