200
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling the future distribution of rare bryophytes in Scotland: the importance of the inclusion of habitat loss

ORCID Icon, , , , &
Pages 105-125 | Received 02 Dec 2022, Accepted 20 Oct 2023, Published online: 28 Nov 2023
 

ABSTRACT

Background

Species distribution models (SDMs) have been widely used to predict species ranges and their future distribution under climate change scenarios, mostly using only climatic variables. An important factor that is usually neglected, is the habitat of the species that are being modelled. Even when included, it is often considered a fixed factor, but in reality, it is also subjected to changes.

Aims

In this study, we assessed if this omission can lead to different projected distributions of the species.

Methods

For this purpose, we applied an ensemble of SDMs, and we projected the distribution of rare bryophyte species in Scotland in the 2050s. Bryophytes are generally very climate-reliant and lend themselves to bioclimatic studies, and we selected species different grades of affinity with blanket bogs, which are threatened by climate change. Blanket bog extension was included in the model as an explanatory variable, and the models were run for three 2050s scenarios: once with the current blanket bog distribution and twice using the blanket bog distribution derived from two bioclimatic models (Lindsay modified and Blanket Bog Tree model), under the same climate change projections.

Results

The results showed some differences in the predicted future distribution of those species with a strong relationship with blanket bogs, when habitat changes were accounted for. For example, Sphagnum majus, the species with the highest affinity with blanket bog in our study, was not predicted to change its future distribution when blanket bog is held constant at the current level, but was predicted to lose up to 60% of its current suitable area when the projected loss of blanket bog is included.

Conclusion

Our results suggest that adding future habitat changes could improve the reliability of SDMs in the first steps of planning for conservation and restoration.

Acknowledgments

We thank Andrew Coupar for his help in defining the list of bryophyte species for the study, Astley Hastings and the ADVENT project for providing the Land Cover Map and Christopher Ellis for his technical advice with Maxent. We also thank the many anonymous reviewers who have contributed to greatly improving the manuscript from its first version to this final one.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/17550874.2023.2274839

Additional information

Funding

The work was supported by a studentship from Macaulay Development Trust [Grant Number: E000646-507 00].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 364.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.