412
Views
2
CrossRef citations to date
0
Altmetric
Articles

A method to quantify stiffness across the entire surface of a shoe‘s midsole

, , , , , & show all
Pages 105-116 | Received 01 Jul 2020, Accepted 11 Jan 2021, Published online: 29 Jan 2021
 

Abstract

Quantifying the midsole material characteristics of athletic footwear is a standard task in footwear research and development. Current material testing protocols primarily focus on the determination of cushioning properties of the heel region or the quantification of the midsole properties as one assembly. However, midsoles possess different spatial material properties that have not been quantified from previous methodologies. Therefore, new material testing methods are required to quantify the local material response of athletic footwear. We developed a cyclical force-controlled material testing protocol for the determination of non-homogeneously distributed material stiffness with a high spatial resolution. In five prototype shoes varying in their stiffness distribution, we found that the material properties can be reliably measured across the midsole. Furthermore, we observed a characteristic non-linear material response regardless of the midsole location. We found that the material stiffness increased with an increase of the applied force and that this effect is further intensified by higher testing cycles. Additionally, the obtained midsole stiffness depends on the geometry of the midsole. We explored different approaches to reduce the measurement time of the testing protocol and found that the number of measurements can be reduced by 70% using 2 D-interpolation procedures. Determining the spatial material properties of midsoles needs to be considered to understand foot-shoe interactions. Furthermore, this measurement protocol can be used for quality control within the footwear and can be adapted for considering the effects of different running styles or speeds on ground force application characteristics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was funded by Brooks Running Inc., Seattle, WA, USA.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.