426
Views
10
CrossRef citations to date
0
Altmetric
Articles

Modeling highly imbalanced crash severity data by ensemble methods and global sensitivity analysis

, , &
Pages 562-584 | Published online: 22 Jul 2020
 

Abstract

Crash severity has been extensively studied and numerous methods have been developed for investigating the relationship between crash outcome and explanatory variables. Crash severity data are often characterized by highly imbalanced severity distributions, with most crashes in the Property-Damage-Only (PDO) category and the severe crash category making up only a fraction of the total observations. Many methods perform better on outcome categories with the most observations than other categories. This often leads to a high modeling accuracy for PDO crashes but poor accuracies for other severity categories. This research introduces two ensemble methods to model imbalanced crash severity data: AdaBoost and Gradient Boosting. It also adopts a more reasonable performance metric, F1 score, for model selection. It is found that AdaBoost and Gradient Boosting outperform other benchmark methods and generate more balanced prediction accuracies. Additionally, a global sensitivity analysis is adopted to determine the individual and joint impacts of explanatory factors on crash severity outcome. Vertical curve, seat belt use, accident type, road characteristics, and truck percentage are found to be the most influential factors. Finally, a simulation-based approach is used to further study how the impact of a particular factor may vary with respect to different value ranges.

Acknowledgment

The authors would like to thank the Highway Safety Information System (HSIS) program for providing the data used in this research. Also, we would like to thank the reviewers for their insightful and constructive comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 128.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.