161
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Utilizing angle-based outlier detection method with sliding window mechanism to identify real-time crash risk

, , &
Pages 157-174 | Published online: 27 Mar 2023
 

Abstract

Developing real-time crash risk models has been a hot research topic as it could identify crash precursors and thus triggering active traffic management strategies. Currently, crash risk identification models were mainly developed based upon supervised learning techniques, which requires large sample size of historical crash data. However, crashes are rare events in the real world, where the performance of supervised learning methods can be severely degraded to deal with the imbalanced sample. Besides, the data heterogeneity issue is another critical challenge. In this study, the unsupervised learning approach has been introduced to address unbalanced samples and data heterogeneity issues, and the experimental results has verified the effectiveness of the method. Data from the Shanghai urban expressway system were utilized for the empirical analyses. Several unsupervised learning methods were tested, among which, Angle-Based Outlier Detection (ABOD) model showed the best performance with 80.4% sensitivity and 25.4% false alarm rate (FAR). Considering the varying traffic flow distribution, dynamic ABOD with sliding window is further proposed, which improves the sensitivity by 6.3% and reduces the FAR by 8.1%. Finally, the proposed model is used to construct personalized road-level models, which achieve good performance despite the small sample size and severe sample imbalance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was sponsored by the Science and Technology Project of Zhejiang Province, No. 2021C01011 and the National Natural Science Foundation of China (NSFC), No.71771174.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 128.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.