275
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mechanical recyclability of biodegradable polymers used for food packaging: case study of polyhydroxybutyrate-co-valerate (PHBV) plastic

, , &
Pages 1878-1892 | Received 11 Jul 2022, Accepted 31 Aug 2022, Published online: 21 Sep 2022
 

Abstract

For the purpose of mechanical recycling for food contact applications, decontamination of polyhydroxybutyrate-co-valerate (PHBV) plastic was performed under different temperatures and time conditions. As expected, increasing the decontamination temperature and duration increased the decontamination efficiency, but also the degradation of the polymer. The combination 160 °C/6 h was selected as the optimal conditions that maximize contaminants removal while minimizing polymer degradation. Then the safety of the recycled PHBV under these conditions was assessed, in accordance with EFSA regulation based on bottle-to-bottle PET recycling. Decontamination of low molecular weight molecules such as toluene, chlorobenzene, and methyl salicylate was nearly complete with residual concentrations below the modeled concentrations allowed in the polymer when the adult scenario is considered. However, the higher molecular weight and lower volatility molecules exhibited acceptable decontamination efficiencies, but their residual concentrations in the polymer exceeded the maximum concentrations of no concern. The presence of these molecules allows the use of nearly 21% recycled PHBV in the new materials to meet safety criteria. It is important to keep in mind that this work, never done before, is a preliminary work on mechanical recycling of PHBV, mainly based on extrapolation of PET conditions and regulations. Much more research needs to be done to improve the decontamination process, the barrier properties of PHBV or to think about a short recycling line for PHBV.

Acknowledgements

The authors acknowledge the financial support of the H2020 USABLE packaging project.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.