178
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On the hydraulics of flow in cracks in embankment dam cores

ORCID Icon, , &
Pages 1367-1382 | Received 29 Dec 2021, Accepted 17 May 2022, Published online: 28 Jun 2022
 

Abstract

A major hazard to embankment dams is internal erosion and piping arising from concentrated leaks through transverse cracks in the core near the crest due to differential settlement or desiccation. This contribution summarises experiments and a formal boundary layer analysis of flow through such transverse cracks subject to near-horizontal pressure gradients. The critical hydraulic gradients, at which erosion in such cracks may initiate, occur at the downstream end of the crack. This location and the maximum crack width defines the local point most vulnerable to erosion. The hydraulic laboratory measurements are shown to be consistent with equivalent international standards describing depths at free overflows, in spite of the narrow vertical profile of the cracks, provided that the tendency towards laminar flow in very narrow cracks is incorporated within the modelling. A backwater model based on conventional representations of flow in narrow channels is verified qualitatively by hydraulic laboratory data. Flow-depth relationships, maximum crack wall hydraulic stresses, normalised hydraulic wall stress profiles and depth profiles along cracks are presented for the two principal crack geometries present in embankment dams. These characterisations are a significant improvement on the simplified methods previously used to assess internal erosion in transverse cracks in dams.

Acknowledgments

This research was carried out with funding provided by Australian Research Council.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

This research was carried out with funding provided by Australian Research Council.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.