279
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Enhancing efficacy of existing antibacterials against selected multiple drug resistant bacteria using cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles

, , , ORCID Icon, & ORCID Icon
Pages 438-454 | Published online: 22 Dec 2021
 

ABSTRACT

Developing new antibacterial drugs by using traditional ways is insufficient to meet existing challenges; hence, new strategies in the field of antibacterial discovery are necessary. An alternative strategy is to improve the efficacy of currently available antibiotics. Herein, the antibacterial efficacy of drugs (Cefixime, Sulfamethoxazole, and Moxifloxacin) and drug-loaded cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles (NPs) was elucidated versus Gram-negative bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae, neuropathogenic Escherichia coli K1 and Serratia marcescens) and Gram-positive bacteria (Methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Streptococcus pneumoniae, and Bacillus cereus). NPs were synthesized by co-precipitation and the Stöber method, and characterized by Fourier transform-infrared spectroscopy, Zetasizer, and Atomic force microscopy. Lactate dehydrogenase (LDH) assays were accomplished to determine drug cytotoxicity against human cells. Spherical NPs in the range of 118–362 nm were successfully synthesized. Antibacterial assays revealed that drugs conjugated with NPs portray enhanced bactericidal efficacies against multiple drug resistant bacteria compared to the drugs alone. Of note, Cefixime-conjugated NPs against Escherichia coli K1 and Methicillin- resistant Staphylococcus aureus, resulted in the complete eradication of all bacterial isolates tested at significantly lower concentrations compared to the antibiotics alone. Likewise, conjugation of Moxifloxacin resulted in the complete elimination of E. coli K1 and MRSA. Of note, nano-formulated drugs presented negligible cytotoxicity against human cells. These results depict potent, and enhanced efficacy of nano-formulated drugs against medically important bacteria and can be used as alternatives to current antibiotics. Future in vivo studies and clinical studies are warranted in prospective years to realize these expectations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Ethical approval and consent to participate

This article does not contain any studies with human participants. This article does not contain any studies involving animals.

Additional information

Funding

This research was funded by the American University of Sharjah and University of Sharjah;American University of Sharjah

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 346.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.