1,008
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Microscopic modeling of cyclists interactions with pedestrians in shared spaces: a Gaussian process inverse reinforcement learning approach

ORCID Icon & ORCID Icon
Pages 828-854 | Received 10 Nov 2020, Accepted 18 Feb 2021, Published online: 20 Mar 2021
 

Abstract

This study presents a microsimulation-oriented framework for modeling cyclists' interactions with pedestrians in shared spaces. The objectives of this study are to 1) infer how cyclists in head-on and crossing interactions rationally assess and make guidance decisions of acceleration and yaw rate, and 2) use advanced Artificial Intelligent (AI) techniques to model road-user interactions. The Markov Decision Process modeling framework is used to account for road-user rationality and intelligence. Road user trajectories from three shared spaces in North America are extracted by means of computer-vision algorithms. Inverse Reinforcement Learning (IRL) algorithms are utilized to recover continuous linear and nonlinear Gaussian-Process (GP) reward-functions (RFs). Deep Reinforcement Learning is used to estimate optimal cyclist policies. Results demonstrated that the GP-RF captures the more complex interaction behaviour and accounts for road-user heterogeneity. The GP-RF led to more consistent inferences of road-users behaviour and accurate predictions of their trajectories compared with the linear RF.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 594.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.