111
Views
0
CrossRef citations to date
0
Altmetric
Review

Host Proteins Involved in microtubule-dependent HIV-1 Intracellular Transport and Uncoating

&
Pages 361-374 | Received 11 Jan 2019, Accepted 28 Feb 2019, Published online: 15 May 2019
 

Abstract

Microtubules and microtubule-associated proteins are critical for cargo transport throughout the cell. Many viruses are able to usurp these transport systems for their own replication and spread. HIV-1 utilizes these proteins for many of its early events postentry, including transport, uncoating and reverse transcription. The molecular motor proteins dynein and kinesin-1 are the primary drivers of cargo transport, and HIV-1 utilizes these proteins for infection. In this Review, we highlight recent developments in the understanding of how HIV-1 hijacks motor transport, the key cellular and viral proteins involved, and the ways that transport influences other steps in the HIV-1 lifecycle.

Financial & competing interests disclosures

SK Carnes received funding from NIH (grant number: F31 AI129747-01A1). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 419.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.