910
Views
180
CrossRef citations to date
0
Altmetric
Original Article

Detection of individual trees and estimation of tree height using LiDAR data

, , , &
Pages 425-434 | Received 11 May 2007, Accepted 30 Aug 2007, Published online: 19 Oct 2007
 

Abstract

For estimation of tree parameters at the single-tree level using light detection and ranging (LiDAR), detection and delineation of individual trees is an important starting point. This paper presents an approach for delineating individual trees and estimating tree heights using LiDAR in coniferous (Pinus koraiensis, Larix leptolepis) and deciduous (Quercus spp.) forests in South Korea. To detect tree tops, the extended maxima transformation of morphological image-analysis methods was applied to the digital canopy model (DCM). In order to monitor spurious local maxima in the DCM, which cause false tree tops, different h values in the extended maxima transformation were explored. For delineation of individual trees, watershed segmentation was applied to the distance-transformed image from the detected tree tops. The tree heights were extracted using the maximum value within the segmented crown boundary. Thereafter, individual tree data estimated by LiDAR were compared to the field measurement data under five categories (correct delineation, satisfied delineation, merged tree, split tree, and not found). In our study, P. koraiensis, L. leptolepis, and Quercus spp. had the best detection accuracies of 68.1% at h = 0.18, 86.7% at h = 0.12, and 67.4% at h = 0.02, respectively. The coefficients of determination for tree height estimation were 0.77, 0.80, and 0.74 for P. koraiensis, L. leptolepis, and Quercus spp., respectively.

Acknowledgments

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2005-213-F00001) and Korea University. Also, we would like to thank Kang-Won Lee for offering the LiDAR data.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 159.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.