67
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Pits and rocky microsites in a subalpine forest stand facilitate regeneration of spruce saplings by suppressing dwarf bamboo growth inside a deer-proof fence

, , &
Pages 342-348 | Received 12 Feb 2009, Accepted 05 Jun 2009, Published online: 08 Jul 2009
 

Abstract

We determined patterns of microsite suppression in dwarf bamboo Sasa nipponica when grazing deer were absent. This bamboo species is able to outcompete Hondo spruce (Picea jezoensis var. hondoensis) saplings under many environmental circumstances. We set up two 10 × 100 m plots inside a deer-proof fence within a subalpine forest on Mt. Ohdaigahara, central Japan, and two similarly sized plots outside the fence. Within the plots, we surveyed microsites where spruce saplings grew. We measured height and shoot elongation of all spruce saplings, and culm height and cover ratios of dwarf bamboo growing around each spruce sapling. Spruce sapling density and average height were higher inside the deer-proof fence than outside, as were bamboo height and cover. Thus, there was a negative effect of deer browsing on vegetation parameters outside the fence and a suppression of the negative effect of bamboo on spruce sapling growth inside the fence. Spruce sapling height was higher in tree-fall pits than in other microsites inside the fence, whereas both dwarf bamboo height and cover were lower in pits and rocky sites than elsewhere. In soil and collar microsites, spruce sapling shoot growth was lower and bamboo height and cover were higher than in pits and rocky sites. Inside the fence, dwarf bamboo cover was high, but pits and rocks suppressed its growth, allowing spruce saplings to flourish. To restore heavily damaged spruce forests with advanced saplings, it will be necessary to construct deer-proof fences and create and maintain microsites with pits and rocks.

Acknowledgments

The authors thank professors Akimasa Takeda and Ei'ichi Shibata for their advice on this study, and Ministry of the Environment, Kayo Honobe (KANSO Technos), and staff of the Visitor Center of Ohdaigahara for their support. Thanks also go to Sachiko Hayashi, Yusuke Hashimoto, Chiharu Tokuyama, Mafumi Nakasu, Hisae Oguro, and Yumi Nakamura for their field assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 159.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.