73
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Decomposing ability of diverse litter-decomposer macrofungi in subtropical, temperate, and subalpine forests

Pages 272-280 | Received 13 Feb 2014, Accepted 15 Oct 2014, Published online: 16 Dec 2014
 

Abstract

An integrative survey was conducted on the ability of litter-decomposing macrofungi (LDM) from forests of different climatic regions to decompose litter materials and recalcitrant compounds in the litter under pure culture conditions. A total of 75 isolates in six families of LDM from subtropical, cool temperate (CT), and subalpine (SA) forests in Japan were tested for their ability to decompose a total of eight litter types that are major substrates for macrofungi at each site. The mass loss of the litter (% original mass) during incubation for 12 weeks at 20 °C ranged from −3.1 % to 54.5 %. Macrofungi originated from forests of different climatic regions exhibited similar decomposing abilities, but the SA isolates caused negligible mass loss of Abies needles, possibly due to inhibitory compounds. Decomposing activity for recalcitrant compounds (as acid-unhydrolyzable residues, AUR) was found in many macrofungal isolates. The isolates of Marasmiaceae were generally more able to cause selective decomposition of AUR than those of Mycenaceae and to decompose AUR in partly decomposed materials. The isolates of Xylariaceae had lower ligninolytic activity than those of Basidiomycetes. The AUR mass loss caused by CT isolates was significantly lower in nitrogen-rich beech litter than in its nitrogen-poor counterpart, suggesting a retarding effect of nitrogen on AUR decomposition, which was obvious for Mycenaceae. The effect of fungal family was generally more significant than that of litter type, suggesting that possible changes in the composition of fungal assemblages influence their functioning more than changes in the quality of substrates.

Acknowledgments

I thank Ms. K. Koide for help with pure culture tests and Dr. Elizabeth Nakajima for critical reading of the manuscript. This study received partial financial support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) (No. 19780114), National Institute of Agrobiologial Sciences (NIAS) Japan, The Sumitomo Foundation, Nissan Global Foundation, Nippon Life Inst. Foundation, and the Grants for Excellent Graduate Schools, MEXT, Japan (12–01) to Kyoto University.

Notes

Electronic supplementary material The online version of this article (doi:10.1007/s10310-014-0475-9) contains supplementary material, which is available to authorized users.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 159.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.