178
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of long noncoding RNA H19 on cementoblast differentiation, mineralisation, and proliferation

, , , , , , & show all
Pages 150-156 | Received 22 Dec 2020, Accepted 04 Aug 2021, Published online: 14 Aug 2021
 

Abstract

Objective

Cementum which is a layer of thin and bone-like mineralised tissue covering tooth root surface is deposited and mineralised by cementoblasts. Recent studies suggested long noncoding RNA H19 (H19) promotes osteoblast differentiation and matrix mineralisation, however, the effect of H19 on cementoblasts remains unknown. This study aimed to clarify the regulatory effects of H19 on cementoblast differentiation, mineralisation, and proliferation.

Material and methods

An immortalised murine cementoblast cell line OCCM-30 was used in this study. H19 expression was examined by real-time quantitative polymerase chain reaction (RT-qPCR) during OCCM-30 cell differentiation. OCCM-30 cells were transfected with lentivirus or siRNA to up-regulate or down-regulate H19, then the levels of runt-related transcription factor 2 (Runx2), osterix (Sp7), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), osteocalcin (Bglap) were tested by RT-qPCR or western blot. Alizarin red staining, ALP activity assay and MTS assay were performed to determine the mineralisation and proliferation ability of OCCM-30 cells.

Results

H19 was dramatically increased during OCCM-30 cell differentiation. Overexpression of H19 increased the levels of Runx2, Sp7, Alpl, Ibsp, and Bglap and enhanced ALP activity and the formation of mineral nodules. While down-regulation of H19 suppressed the above cementoblast differentiation genes and inhibited ALP activity and mineral nodule formation. However, the proliferation of OCCM-30 cells was not affected.

Conclusions

H19 promotes the differentiation and mineralisation of cementoblasts without affecting cell proliferation.

Disclosure statement

All authors declare that they have no conflicts of interest related to this work.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 81671020, 81701013, 81400545].

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.