464
Views
0
CrossRef citations to date
0
Altmetric
General

A Five-Decision Testing Procedure to Infer the Value of a Unidimensional Parameter

, &
Pages 321-326 | Received 01 Apr 2016, Accepted 01 Jan 2018, Published online: 09 Jul 2018
 

ABSTRACT

A statistical test can be seen as a procedure to produce a decision based on observed data, where some decisions consist of rejecting a hypothesis (yielding a significant result) and some do not, and where one controls the probability to make a wrong rejection at some prespecified significance level. Whereas traditional hypothesis testing involves only two possible decisions (to reject or not a null hypothesis), Kaiser’s directional two-sided test as well as the more recently introduced testing procedure of Jones and Tukey, each equivalent to running two one-sided tests, involve three possible decisions to infer the value of a unidimensional parameter. The latter procedure assumes that a point null hypothesis is impossible (e.g., that two treatments cannot have exactly the same effect), allowing a gain of statistical power. There are, however, situations where a point hypothesis is indeed plausible, for example, when considering hypotheses derived from Einstein’s theories. In this article, we introduce a five-decision rule testing procedure, equivalent to running a traditional two-sided test in addition to two one-sided tests, which combines the advantages of the testing procedures of Kaiser (no assumption on a point hypothesis being impossible) and Jones and Tukey (higher power), allowing for a nonnegligible (typically 20%) reduction of the sample size needed to reach a given statistical power to get a significant result, compared to the traditional approach.

Acknowledgment

The authors thank two anonymous reviewers and to an Associate Editor whose constructive comments and suggestions led to a significant improvement of the article.

Additional information

Funding

Aaron McDaid and Zoltán Kutalik were supported by SystemsX.ch (51RTP0 151019) and Swiss National Science Foundation (31003A-143914).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 106.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.