Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 60, 2019 - Issue 4
2,292
Views
5
CrossRef citations to date
0
Altmetric
Regular Papers

Selective harmonic elimination method for unequal DC sources of multilevel inverters

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 378-384 | Received 03 Feb 2019, Accepted 13 May 2019, Published online: 26 Jul 2019

Figures & data

Figure 1. (a) Asymmetric cascaded single-phase inverter; (b) output waveform at low mi; (c) output waveform at high mi with V1 ≠ V2.

Figure 1. (a) Asymmetric cascaded single-phase inverter; (b) output waveform at low mi; (c) output waveform at high mi with V1 ≠ V2.

Figure 2. Modulation index (mi) versus the ratio V1/V2.

Figure 2. Modulation index (mi) versus the ratio V1/V2.

Figure 3. For mi = 0.6 to 1.1, (a) α1 versus V1/V2 (b) α2 versus V1/V2.

Figure 3. For mi = 0.6 to 1.1, (a) α1 versus V1/V2 (b) α2 versus V1/V2.

Figure 4. System block diagram.

Figure 4. System block diagram.

Figure 5. (a) Output voltage for V1 = 10.8 V, V2 = 18 V, V1/V2 = 0.6, mi = 0.7, α1 = 29.48° and α2 = 89.13°, (b) output voltage spectrum.

Figure 5. (a) Output voltage for V1 = 10.8 V, V2 = 18 V, V1/V2 = 0.6, mi = 0.7, α1 = 29.48° and α2 = 89.13°, (b) output voltage spectrum.

Figure 6. (a) Output voltage for V1 = 16.2 V, V2 = 18 V, V1/V2 = 0.9, mi = 0.9, α1 = 10.61° and α2 = 66.41°, (b) output voltage spectrum.

Figure 6. (a) Output voltage for V1 = 16.2 V, V2 = 18 V, V1/V2 = 0.9, mi = 0.9, α1 = 10.61° and α2 = 66.41°, (b) output voltage spectrum.

Figure 7. (a) Output voltage for V1 = 28.8 V, V2 = 18 V, V1/V2 = 1.6, mi = 1.1, α1 = 26.94° and α2 = 34.92°, (b) output voltage spectrum.

Figure 7. (a) Output voltage for V1 = 28.8 V, V2 = 18 V, V1/V2 = 1.6, mi = 1.1, α1 = 26.94° and α2 = 34.92°, (b) output voltage spectrum.

Figure 8. Harmonic analyses versus V1/V2 ratio for V1 = 18 V; (a) Value of fundamental component; (b) Values of third harmonic component and its multiples; (c) Other lower harmonic components. (d) THD versus V1/V2 ratio for different values of modulation index.

Figure 8. Harmonic analyses versus V1/V2 ratio for V1 = 18 V; (a) Value of fundamental component; (b) Values of third harmonic component and its multiples; (c) Other lower harmonic components. (d) THD versus V1/V2 ratio for different values of modulation index.

Figure 9. (a) Output voltage for V1 = 10.8 V, V2 = 18 V, V1/V2 = 0.6, mi = 0.7, α1 = 29.48 and α2 = 89.13°, (b) output voltage spectrum where cursor X1 at 250 Hz and cursor X2 at 350 Hz.

Figure 9. (a) Output voltage for V1 = 10.8 V, V2 = 18 V, V1/V2 = 0.6, mi = 0.7, α1 = 29.48 and α2 = 89.13°, (b) output voltage spectrum where cursor X1 at 250 Hz and cursor X2 at 350 Hz.

Figure 10. (a) Output voltage for V1 = 16.2 V, V2 = 18 V, V1/V2 = 0.9, mi = 0.9, α1 = 10.61° and α2 = 66.41°, (b) output voltage spectrum where cursor X1 at 250 Hz and cursor X2 at 450 Hz.

Figure 10. (a) Output voltage for V1 = 16.2 V, V2 = 18 V, V1/V2 = 0.9, mi = 0.9, α1 = 10.61° and α2 = 66.41°, (b) output voltage spectrum where cursor X1 at 250 Hz and cursor X2 at 450 Hz.

Figure 11. (a) Output voltage for V1 = 28.8 V, V2 = 18 V, V1/V2 = 1.6, mi = 1.1, α1 = 26.94° and α2 = 34.92o, (b) output voltage spectrum where cursor X1 at 250 Hz and cursor X2 at 350 Hz.

Figure 11. (a) Output voltage for V1 = 28.8 V, V2 = 18 V, V1/V2 = 1.6, mi = 1.1, α1 = 26.94° and α2 = 34.92o, (b) output voltage spectrum where cursor X1 at 250 Hz and cursor X2 at 350 Hz.