Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 61, 2022 - Issue 3
347
Views
4
CrossRef citations to date
0
Altmetric
Metallurgical Processing

Atomic diffusion at the Ni–Ti liquid interface using molecular dynamics simulations

ORCID Icon, , , , ORCID Icon, ORCID Icon, & show all
Pages 359-365 | Received 27 Oct 2021, Accepted 03 Feb 2022, Published online: 16 Feb 2022
 

ABSTRACT

Nickel Titanium (NiTi) alloys are produced by heating raw Ni and Ti in high temperature. In this stage, Ni and Ti atoms diffuse and mix to form an alloy. Despite the importance of technology, Ni and Ti atoms’ diffusion mechanism, however, still remains unelucidated. We performed molecular dynamics simulations for 1 ns to investigate the diffusion process of Ni–Ti liquid at temperatures of 2000, 2200, 2400, and 2600 K. Our results show that the diffusion coefficient increases with increasing temperature. In the 2000–2400 K temperature range, Ni atoms diffuse faster by 1.4% to 16.3% than Ti atoms. On the other hand, the liquid Ni structure becomes less dense at higher temperatures (T = 2600 K), such that Ti atoms with a smaller mass can diffuse more rapidly. From the calculations, the diffusion activation energy of Ni is 0.2 eV higher than that of Ti.

RÉSUMÉ

Les alliages de nickel et titane (NiTi) sont produits en chauffant à température élevée du Ni et du Ti à l’état brut. A cette étape, les atomes de Ni et de Ti diffusent et se mélangent pour former un alliage. Cependant, malgré l’importance de la technologie, le mécanisme de diffusion des atomes de Ni et Ti n’a pas encore été élucidé. Nous avons effectué des simulations de dynamique moléculaire pendant 1 ns pour étudier le processus de diffusion du liquide Ni-Ti à des températures de 2000, 2200, 2400 et 2600 K. Nos résultats montrent que le coefficient de diffusion augmente avec l’augmentation de la température. Dans la gamme de température de 2000 à 2400 K, les atomes de Ni diffusent plus rapidement de 1.4% à 16.3% que les atomes de Ti. D’un autre côté, la structure du Ni liquide devient plus extensible aux températures plus élevées (T = 2600 K), de telle sorte que les atomes de Ti à plus petite masse peuvent diffuser plus rapidement. D’après les calculs, l’énergie d’activation de la diffusion du Ni est supérieure de 0.2 eV à celle du Ti.

Acknowledgement

This work was supported by the PDUPT 2021 research grant from the Ministry of Education, Culture, Research and Technology of The Republic of Indonesia [contract # 167/E4.1/AK.04.PT/2021]; and the manuscript preparation for the World Class Professor Program 2021 [# 2817/E4.1/KK.04.05/2021].

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Lembaga Pengelola Dana Pendidikan (ID): [grant number 2817/E4.1/KK.04.05/2021]; Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi (ID): [grant number 167/E4.1/AK.04.PT/2021].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 416.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.