234
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

SOOT AND NANOPARTICLE FORMATION IN LAMINAR AND TURBULENT FLAMES

, , , , , & show all
Pages 387-400 | Received 19 Jul 2005, Accepted 13 Jan 2006, Published online: 25 Jan 2007
 

Abstract

A new optical diagnostic method has been developed based on the interaction of a pulsed UV laser source with combustion-generated aerosols. This method allows characterization of nanoparticles of organic carbon (NOC) and soot by point measurements. Fluorescence and incandescence measurements induced by the fifth harmonic of a Nd-YAG laser at 213 nm are used for the determination of the volume fractions of particulates in a laminar premixed flame and in a turbulent non-premixed flame of ethylene/air. The selected light source enhances the fluorescence of NOC, which exhibit a large absorption band between 200 and 250 nm and also heats up soot particles to give incandescent emission. Ultraviolet emission signals are correlated with NOC extinction coefficients, while LII signals are correlated with extinction coefficients in the visible region. Laser light scattering measurements are used to estimate the mean sizes of both classes of particles.

ACKNOWLEDGMENTS

We are grateful to Professor John Kent for introducing us to the study of turbulent, non-premixed flames and for his suggestions in the set-up of the turbulent flame experiment.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.