248
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

COOL FLAME PROPAGATION SPEEDS

&
Pages 1349-1360 | Received 07 Jul 2006, Accepted 16 Nov 2006, Published online: 01 Jun 2007
 

Abstract

Cool flames are studied at reduced-gravity in a closed, unstirred, spherical reactor to minimize complexities associated with natural convection. Under such conditions, transport is controlled by diffusive fluxes and the flames are observed to propagate radially outward from the center of the reactor toward the wall. Intensified video records are obtained and analyzed to determine the flame radius as a function of time for different vessel temperatures (593–623 K) and initial pressures (55.2–81.4 kPa) using an equimolar (φ = 5) propane-oxygen premixture. Polynomial-fits are applied to the data and differentiated to determine the cool flame propagation speeds. In nearly all cases considered, the flame decelerates monotonically and in some cases, subsequently retreats towards the center of the reactor. The flame speed is also tabulated as a function of the flame stretch rate. Extrapolation of the cool flame speeds to zero stretch is then performed to determine the “unstretched” cool flame propagation speeds.

Special thanks are offered to the NASA KC-135 crew, pilots and support staff. This work was funded by NASA grant NCC3-1008 and NSF GRFP.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.