259
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Stability Characteristics of Turbulent Hydrogen Dilute Diffusion Flames

&
Pages 756-781 | Received 13 May 2008, Accepted 26 Feb 2009, Published online: 29 Apr 2009
 

Abstract

Diffusion flame combustion of high-hydrogen fuels in land-based gas turbine combustors may include dilution of the fuel with inert gases and high velocity fuel injection to reduce NOx emissions. Stability regimes of such combustors are investigated in this study by examining turbulent dilute diffusion flames of hydrogen/nitrogen mixtures, issuing into a quiescent environment from a thin-lipped tube. This study has revealed two distinctly different types of lifted flames: lifted, laminar-base flames, for which liftoff heights vary from 1 to 3 jet diameters above the jet exit and are controlled by differential diffusion, and lifted, turbulent-base flames that stabilize much further downstream and are dominated by turbulent processes. In addition, stability limits governing the detachment or reattachment of the flame to the lip of the burner are examined, as well as the limits governing transitions between the two types of lifted flames and transition from these lifted flames to blowout.

The authors would like to thank Fred White for his assistance in the setup of the atmospheric pressure combustor. The support of the U.S. DOE Turbines program and ORISE is also gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.