262
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Three-Dimensional Simulation of Deflagration-to-Detonation Transition with a Detailed Chemical Reaction Model

, , &
Pages 1758-1773 | Received 27 Oct 2013, Accepted 30 Mar 2014, Published online: 30 Sep 2014
 

Abstract

A three-dimensional simulation of the deflagration-to-detonation transition (DDT) in a H2/O2 mixture in a rectangular tube is performed under adiabatic and isothermal wall boundary conditions. In the isothermal wall boundary case, a local explosion triggering the onset of detonation occurs near the center of the tube behind the incident shock wave, which agrees qualitatively with the two-dimensional simulation in our earlier study. In contrast, in the adiabatic case, auto-ignition is observed near the corner of the tube before the local explosion occurs on each wall behind the flame, which is accelerated by the high-temperature condition (preheated zone) caused by the generation of compression waves. The flame overtakes the incident shock and propagates toward the upper and lower walls. In some experimental studies, the local explosion occurred near the wall. Therefore, the present adiabatic case received special attention. Moreover, these phenomena are discussed in detail in terms of the flame acceleration, preheated zone, and xt diagram.

ACKNOWLEDGMENTS

This research was conducted in collaboration with the Cybermedia Center using the Osaka University supercomputer system.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.