340
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

An Experimental and Modeling Study to Investigate Effects of Two-Stage Direct Injection Variations on HCCI Combustion

, , , , &
Pages 642-658 | Received 18 Nov 2013, Accepted 28 Aug 2014, Published online: 09 Sep 2014
 

Abstract

In this study, homogenous charge compression ignition (HCCI) combustion with two-stage direct injection (TSDI) strategies was modeled with stochastic reactor model (SRM) and validated by using the experimental results of the TSDI gasoline HCCI engine. For the experimental study, a diesel engine was converted to an electronically controlled HCCI gasoline engine. The effects of injection timings and injection ratios on the HCCI combustion characteristics were studied at high equivalence ratio and constant engine speed. The injection timings (first and second) and fuel quantity for each injection were adjusted to get desired mixture formation in the cylinder. During the experiments, the maximum cylinder gas pressure, pressure rise rate and start of combustion were directly controlled by using the second fuel injection timing and injection ratio. Using optimal second fuel injection timing and injection ratio caused a reduction on NOx and HC emissions. The model results of the HCCI combustion were in good agreement with the experimental results. Both of the experimental and modeling results showed that the second fuel injection timing had a strong effect on the HCCI combustion when compared to the first injection timing.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.