733
Views
20
CrossRef citations to date
0
Altmetric
Research Article

An Efficient Machine-Learning Approach for PDF Tabulation in Turbulent Combustion Closure

ORCID Icon, , & ORCID Icon
Pages 1258-1277 | Received 09 Apr 2019, Accepted 27 Oct 2019, Published online: 06 Nov 2019
 

ABSTRACT

Probability density function (PDF) based turbulent combustion modeling is limited by the need to store multi-dimensional PDF tables that can take up large amounts of memory. A significant saving in storage can be achieved by using various machine-learning techniques that represent the thermo-chemical quantities of a PDF table using mathematical functions. These functions can be computationally more expensive than the existing interpolation methods used for thermo-chemical quantities. More importantly, the training time can amount to a considerable portion of the simulation time. In this work, we address these issues by introducing an adaptive training algorithm that relies on multi-layer perception (MLP) neural networks for regression and self-organizing maps (SOMs) for clustering data to tabulate using different networks. The algorithm is designed to address both the multi-dimensionality of the PDF table as well as the computational efficiency of the proposed algorithm. SOM clustering divides the PDF table into several parts based on similarities in data. Each cluster of data is trained using an MLP algorithm on simple network architectures to generate ‘local’ functions for thermo-chemical quantities. The algorithm is validated for the so-called DLR-A turbulent jet diffusion flame using both RANS and LES simulations and the results of the PDF tabulation are compared to the standard linear interpolation method. The comparison yields a very good agreement between the two tabulation techniques and establishes the MLP-SOM approach as a viable method for PDF tabulation.

Acknowledgments

Rishikesh Ranade would like to thank the Reacting Flow Development team at Ansys Inc. for financial support and valuable intellectual inputs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.