522
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Influence of pH on Productivity, Nutrient Use Efficiency by Dry Bean, and Soil Phosphorus Availability in a No‐Tillage System

&
Pages 1016-1025 | Received 15 Nov 2006, Accepted 31 Mar 2007, Published online: 26 Mar 2008
 

Abstract

Low pH is one of the most yield‐limiting factors for crop production in Cerrado soils. The objective of this study was to determine influence of soil pH on grain yield and its components, and use of nutrients by dry bean in a no‐tillage system in an Oxisol (Typic Haplorthox) of the Cerrado region of Brazil. Five field experiments were conducted for three consecutive years. The pH levels were low (5.3), medium (6.4), and high (6.8), created by applying lime at the rates of 0, 12, and 24 Mg ha−1. Grain yield and its components were significantly influenced by soil pH. Adequate pH for grain yield and its components was 6.4. Maximum variation in grain yield was measured by shoot dry weight, and minimum variation was due to 100‐grain weight. Nutrient utilization efficiency was in the order of magnesium (Mg) > phosphorus (P) > calcium (Ca) > potassium (K) > nitrogen (N) > copper (Cu) > manganese (Mn) > zinc (Zn) > iron (Fe). Soil extractable P increased linearly with increasing pH in the range of 5.3 to 7.3. These results show that adequate soil pH is an important soil acidity index in improving bean yield in Brazilian Oxisols.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.