263
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Rapid and Inexpensive Steam Distillation Method for Routine Analysis of Inorganic Nitrogen in Alkaline Calcareous Soils

, , , , &
Pages 920-931 | Received 17 Aug 2009, Accepted 16 Nov 2010, Published online: 05 Apr 2011
 

Abstract

Determination of inorganic nitrogen (N) in soil is important in making N fertilizer recommendations for crops. To find a rapid, reliable, and economical method for the estimation of inorganic N in alkaline calcareous soils of Pakistan, three steam distillation methods were compared using soils varying in ammonium (NH4) and nitrate (NO3) N contents and other physicochemical properties. In the standard method, the soil sample is shaken with 2 N potassium chloride (KCl) for 1 h, and the extract is then analyzed by steam distillation. In the other two methods, the soil sample is distilled directly with either 2 N KCl or distilled/deionized water. Based on the results of the present work, a method that involves steam distillation with only distilled/deionized water and that requires half the quantity of magnesium oxide (MgO) of the standard method has been proposed, as all the three methods yielded identical results for NH4- and NO3-N contents. Being economical, the proposed method for inorganic N estimation by direct distillation of soil with distilled/deionized water deserves consideration for adoption by soil-testing laboratories.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.