87
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

In Situ Method for Measuring Water Fluxes, Sediment, and Phosphorus at High Drip Infiltrometer Intensities in the Upper Half Meter of a Tilled Clay Soil

, , &
Pages 2139-2151 | Received 31 Oct 2013, Accepted 01 Mar 2015, Published online: 19 Oct 2015
 

Abstract

The first step in evaluating phosphorus (P) loss risks should be to investigate the topsoil, which is generally considered a source of P transport via macropore flow. A procedure is presented for in situ measurement of hydraulic response times, critical water outflow rates, as well as turbidity (T), sediment (SC), and total phosphorus (Ptot) concentrations in outflowing soil water solution from the upper half meter of a clay soil. The method applies to a range of controlled experimental rainfall intensities from a drip infiltrometer, and a zero-tension collection tray located at 0.5 m depth through which percolating water/sediment solution is sampled. Reasonable positive relationships were observed between T, SC, and Ptot versus steady output flow rates (qs). Dependencies were strong between Ptot and each of qs and T, and weaker between Ptot and SC. The methods require further validation and will be further developed in upcoming studies.

Additional information

Funding

The authors thank the Swedish Farmers’ Foundation for Agricultural Research for their financial support of this project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.