394
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Biofertilizers and Phosphate Sources on the Phosphorus Uptake of Lettuce and Chemical Forms of Phosphorus in Soil

, &
Pages 2701-2714 | Received 13 Mar 2017, Accepted 28 Nov 2017, Published online: 15 Dec 2017
 

ABSTRACT

A greenhouse experiment was conducted with a factorial arrangement in a completely randomized design with three replications. Treatments consisted of two levels of plant growth promoting rhizobacteria (PGPR) (Pseudomonas fluorescens) (with and without inoculation), two levels of vermicompost (0 and 1% w/w), and four phosphate (P) sources (control, rock phosphate powder (RP), tricalcium phosphate (TCP), and triple super phosphate (SP) at 25 mg P kg−1 level). Co-application of PGPR and RP in non-vermicompost treatments significantly increased shoot fresh weight, shoot dry matter yield, shoot P uptake, soil Ca2-P concentration, but it significantly decreased soil Ca8-P and Ca10-P concentrations. The maximum shoot P uptake was obtained in combined application of RP with vermicompost which had no significant difference with the co-application of SP with vermicompost in bacterial and non-bacterial treatments. There was a negative correlation coefficient between shoot P concentration and chemical forms of phosphorus. It may be concluded that application of biofertilizers changed the chemical forms of inorganic phosphorus and increased P uptake by plant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.