443
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Surface potential distribution of multilayer graphene using Kelvin probe and electric-field force microscopies

, , &
Pages 115-123 | Received 29 Aug 2016, Accepted 21 Nov 2016, Published online: 18 Apr 2017
 

ABSTRACT

Surface properties of multilayer graphene (MLG) were studied by Kelvin Probe and Electric-field Force Microscopies (KPFM and EFM). Using KPFM, we observed an increase in the work function of MLG with increasing thickness. This is attributed to the surface π-electrons of pz orbitals shifting the Fermi level away from the Dirac point. EFM measurements indicate that the EFM phase increases with DC electric fields (−5 V ≤ V ≤ 5 V) applied to the probe. The parabolic phase-shift dependence is pertaining to the electrostatic interaction produced at the tip-MLG interface. These results provide future directions in band-gap engineering of graphene-based devices.

Funding

This work is supported by the Foundation for Science and Technology of Portugal, grants SFRH/BPD/104887/2014 (RV) and SFRH/BPD/88362/2012 (KR). KR and ALK are grateful to the Russian Foundation for Basic Research (grant No. 16-29-14050-ofr-m) and Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006) for the financial support. Part of this work was developed in the scope of Project CICECO-Aveiro Institute of Materials (ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and, when applicable, cofinanced by FEDER under the PT2020 Partnership Agreement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,630.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.